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ABSTRACT

This is a semiannual progress report for the Antenna Pattern Control Using

Impedance Surfaces research grant. This report covers the research period from

September 16, 1990 to March 15, 1991.

During this research period, a design method for selecting a low-loss impedance

material coating for a born antenna pattern control has been developed. This method

and the stepped waveguide technique can be employed to accurately compute the

electromagnetic wave phenomenon inside the transition region of the horn antenna,

with or without the impedance surfaces, from the feed to the radiating aperture. For

moment method solutions of the electric and magnetic current distributions on the

radiating aperture and the outer surface of the horn antenna, triangular surface-patch

modes are introduced to replace the sinusoidal surface-patch modes as expansion and

testing functions to provide a more physical expansion of the current ditributions.

In the synthesis problem, a numerical optimization process is formulated to mini-

mize the error function between the desired waveguide modes and the modes provided

by the horn transition with impedance surfaces. Since the modes generated by the

horn transition with impedance surface are computed by analytical techniques, the

computational error involved in the synthesis of the antenna pattern is minimum.

Therefore, the instability problem can be avoided.

A preliminary implementation of the techniques has demonstrated that the de-

veloped theory of the horn antenna pattern control using the impedance surfaces is

realizable.



I. INTRODUCTION

As a continuity of the last reporting period, the research of this reporting

period has concentrated on tl_e problems encountered in the previous period. New

approaches and alternative solutions have been found and developed. In this section,

each problem and its solution are presented in detail.

A. Stepped Waveguide Technique

In the previous reporting period, we have indicated a need for an alternative

solution to the variable-dependent first order differential equations formulated to

compute the transition taper of a perfectly conducting horn. A comprehensive study

of the alternative solution has been conducted. As examined by [1] and [2], the

numerical technique in solving the first order differential equation yields the same

results as given by the stepped-waveguide technique [3,4,5,6] when the size of the steps

is sufficiently small. A numerical solution of the differential equation must also be

performed with a finite advancing step size, and due to the numerical problem caused

by evanescent modes, the taper has to be divided into several sections. The hybrid

matrix of each section needs to be computed separately, and translated and combined

into a scattering matrix. Such a technique is inconvenient for a horn with impedance

surfaces and for the numerical optimization process in the synthesis problem. On the

other hand, the stepped-waveguide technique utilizes a finite number of subdivisions

of waveguide steps to approach the continuous horn taper. Within each waveguide

step, the waveguide section is uniform. The scattering matrices of each individual

waveguide step are related to each other by the electromagnetic boundary conditons

on the discontinuous junctions connecting them. The combination of the scattering



matricesof all the stepsgivesthe total scattering matrix of the horn transition. Such

amethod is very convenientto beextendedto computethe scattering matix of a horn

transition with impedancesurfacesand to be compatible with optimization process

in the synthesisproblem. As indicated in [1] for the circular waveguidetaper case,

the computation time for the two techniquesis about the same. Therefore, in our

application, the stepped-waveguidetechniqueis an ideal alternative to compute the

scattering matrix of a horn transition. In the next section,we will briefly describe

the stepped-waveguldetechnique,especiallyas developedfor modeling to the horn

transition with impedancewalls.

1. Scattering Matrix of a Stepped Waveguide

By using the full-wave expansion technique, a field distribution on a section of

waveguide can be expanded as the superposition of all possible modes. For a rectan-

gular waveguide, instead of representing the field distributions by using TMz and TE_

as performed in [3]-[6], it is more convenient to use the cross-sectional components

of the vector potential to characterize the eigenmodes. If we choose TMy and TE_

modes, the field inside a rectangular waveguide can be expressed in terms of A u and

F u. For perfectly conducting surfaces, the two components of the vector potential

can be written as

Ay = j__,(Amne -i_'_ + B,,,,,e'iZ'z)Smn(x,y ) (1)
77171

F u = je__,(Cm,_e -jz'z- D_,_eJt_'*)Tm,,(x,y) (2)
mn

S,n,_(x,y) = 2sin(/3_x)cos(/3_y) (3)
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2cos(fl=x)sin(flvy)
T...(*, V) = v_

(4)

•Then the electric and magnetic fields due to the vector potential can be found by

the following equations:

02A_ 1 oqFy

E. = -j.wlge OxOy + ---eOz (5)

02A_)A (6)

1 O2A_ lOG (7)
Ez = -Jw#e OzOy e Ox

and

H. - lOAy j 1 02F_ (8)
I_ Oz w#¢ OxOy

• 1 c92F_

H_ = -5_--_¢(w2pe+-_y)F_ (9)

Hz 1 OA r 1 O2Fy_ j___-- (lO)
i_ Ox wpc OzOy

Therefore, the full-wave expansion of the fields can be expressed as

E_].=o = Y_[flz(Cm. + D_n) fl_:fl_(Am,_ + B.,,_)]T,_.(x,y) (11)
mn

Ey]z=o = --1 E(w2p¢ - fl_)(Amn + Bmn)Smn(X,y) (12)
I,,dC mn

_ (c_.
H_].=o = -_[--_ -D,_.)+fl.(A.,.-B._.)]Sm.(x,y) (13)

- G)(cm. - D_.)T_.(_, v) (14)
U¢# mn

When there is a discontinuous junction at z = 0, the boundary conditions corre-

lating the two waveguides are

EO)(x,y)lo_a = EO)(x,y)lo_A (15)
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EO)(x,Y)]onAA= 0 (16)

H(')(x,y)lo_, = HO)(x,V)lo._, (17)

where A is the area of the smaller waveguide section. The boundary conditions in (15)-

(17) provide the same number of equations as the number of the amplitude coefficients

in the full-wave expansion. This establishes a unique correspondance between the full-

wave exapnsion coefficients on both sides. Therefore, the relationships between the

full-wave expansion coefficients on both side of the waveguide can be found by

R(2)R(2)

flO)(C(d) + D_)) _- _v (A_) +
U.)£

El"/:_(1)/C(1)re. , kt +DOt ) )
kl

(w:ite- ,__,SO):'_CAO),,,.,,,, + Bg),,)= __,(w'#e
kl

_(_)_(1) .
/:/(1)(a(1) t-,_ _y /P(U_, ,_,k,- B_(_))+ _,_k_

wit

_fS(2}( A (2) _ B_) )
tr" 2, \ f'D,_

"rnn

wi, n

B 0) _ =

(')R(')

,"v (All) + B(1))lVm,_k; (18)
02£

O)

- D_))=

+ _'_ Yv (C(d) - D_),,)]Um,u (20)
wit

- _7)_)(c(d).- D_).lVr.._, (21)

where

U, nnu = 4 f_)_ fbo' sin(/3(2)x')sin(_3(_')x)cos(_3(:)y')cos(/30)y)dxdy (22)

Ca,a2b, b2(1 + &_o)(1 + _to)

V_,,k, = 4 Z _ fbo' cos(flO)x')cos(fl(_l)x)sin(130)y')sin(fl(yl)y)dxdy (23)
v"al a2bl b2

Aa as - a, (24)
x' = x+--_-=z+ 2

Ab b2 - bl (25)V= v+-T = v+--5 --

For perfectly conducting waveguide walls, the integration and U,-,,,_kt and V_,_kt are
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given analytically by

U,,._m = 411 + (-1)m+k][1 + (-1)"+t]/3_(Ofl(2)sin(/3_(2)-_)cos(/3(2)_) (26)

v/a,a2b, b2(1 + (5.o)(1 + 6to)

fl(2)_O)
'_ "Y (27)

-

Doing some tedious but straight forward manipulations of the boundary condition

equations, the relation of the full-wave expansion coefficients on both sides of the

junction can be expressed by

A_ )+B(2) = E w2#c-fl_')2
'_'_ m w2pe-/3_ 2)2(A_'? +

B(_))]Um,_m (28)

C_ ) + D_ ) = E wttfl(2)(/3_2)2-_,)2) Umnu(A_ ) + B('?)

+ _ fl(2) "'"u(C(k])+ D_")) (29)

Ai_) B(_) x--" fl(2) rr ,a(2) B(2)]
-- = Z.w -_ U rnnkt t,'ramn - ran,,

mn IJz

wen(2)tf_(2)2 _ fl(,)2_
m'x t y Y ] rr [f_(2)

+ E _ .... _ tZrnnkllLZrn n -- D_ )) (30)
r4(1) r4(2)/, ,2,,. r4_lJ

mn /,-,z I_y _._ t._¢- -- tJy )

O') 2J_.f__ fl(2)" (C(2) - D_))lVm,_k, (31)

To express (28)-(31) in matrix form, let

a <1) = ( A(_ ) B(] )b<')=( )Di:) (32)k

= C_.) D_ (33)

Then, the matrix equations of (28)-(31) are

a (2) + b(2) = y(a (') + b('))

a (') _ b(') = Z(a (2) - b(2))

(34)

(35)



where Y is a matrix with corresponding elements defined by equations (28) and (29),

and Z by (30) and (31), respectively. With a simple mathematical manipulation of

the two matrix equations, the scattering matrix of the stepped waveguide junction

can be obtained in the form of

.

(ha) 2,,+zy,z )(a)a(2) = 2(1 + YZ)-'Y (I + YZ)-'(YZ- I) b(2)

(36)

Combination of the Stepped Scattering Matrices

Consider two series stepped waveguide each having the scattering matrix of the

form

a('+') ) = (S_'l)

(b.+') ) (s_',+1'a(i+2) = c(i+l)
'-'21

s_))(°(')b(I+1))

,_q'[/2+I) a(i+ 1)

(37)

(38)

where the scattering matrices in the i-th and (i+l)-th section of stepped waveguides

are given by the combination of their junction scattering matrices and the correspond-

ing propagation matrices due to the lengths of the waveguide section. They can be

expressed as

S_ ) = [I + Z(OY(")]-'[I- Z(_)Y (_)]

S[_ ) = 211+ Z(")Y(_)] -1Z (_)D (_)

S_ ) = 2D(_)[I+ Y(")Z(_')]-'Y (0

S_ ) = D(_)[I + Y(")Z(_)]-'[Y('4Z (_) _ I]D (_)

(39)

(40)

(41)

(42)
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wherethe propagation matix D (_) is a diagonal matrix expressing the phase delay or

magnitude attenuation of all possible positively going modes in the full-wave expan-

sion of the v-th ( J-th or (i+l)-th) section of the waveguide which has a length of

d (_). The elment of D (_) is given by

D(k%} = e-JO_ _)d(È) (43)

Using (37) and (38), one can expand the two scattering matrices and obtain the

combined scattering matrix of

where

= " ¢(i)pc(;+a) ¢(0 (45)

S(_O,-,,b) ¢(Owe(i+x) (46)12 _ 'J,2 _'-'12

S(eo_b) ¢(_+_)_¢(i) (47)2, "-- _'21 "-"-'21

S(_O_b) ¢(;+,) ¢(i+a),q_¢(i)¢(i+,) (48)22 _ "-'22 Jr- 'J2l "" '-_22 '-'12

with

F = [I- _,,¢(/+1)¢(ih-'_22J (49)

G = [I- _22¢(i)¢(i+')I-'_,,J (50)

The computer program development of scattering matrices for stepped waveg-

uides and the combined scattering matrix for the total horn transition has been fully

accomplished.



3. Horn Transition with Impedance Surfaces

The coating of lossy materials on the walls of the horn antenna introduces a change

of the electromagnetic field distribution along the horn transition. Technically, it is

important to point out that the symmetry of the coating is very important because

the asymmetry will introduce a significant cross polarization as noted in [7]. Figure 1

shows the geometry of an H-plane coated horn transition and its stepped waveguide

model. The difference between the coated and uncoated stepped waveguide section

is the eigenfunctions in the full-wave expansions. To find the new eigenfunctions, we

start with the search for the new eigenvalues for each individual eigenfunction based

on the boundary conditions across the surfaces of the coating material. Such a process

can be emulated by using the Transverse Resonance Method(TRM)[8] when coatings

are applied on the top and the bottom walls, and TM_ and TEu modes are used

to represent the field distribution. By using the TRM technique, the cross-sectional

wave constants can be obtained by solving the following two complex transcedental

equations for TEu and TMu modes, respectively:

fl.._ttan(/_h) + flo_tan(_o¢d) = 0
_d

fl'_ cot(/_mh) + flora cot(flomd) = 0
#d

- 1) (51)

ZJ-ZoJ=J.o o(,r  - 1) (52)

where (fl,,flo,), and (flm,flo_) are the complex propagation constants inside and out-

side the coating material for TE_ and TMu modes, respectively. The solution of (51)

and (52) requires a dedicated complex root solver in order not to miss any root in the

complete eigenvalue sequence. Such a complex root solver has been developed in this

research period. Once the complex eigenvalues are provided, the scattering matrix
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for each individual coated waveguide step can be found following similar procedures

as that of the perfectly conducting waveguide step presented earlier. The technique

of Combining the scattering matrices of the coated waveguide steps is identical to that

of the uncoated case.

When the change of electromagnetic field distribution introduced by the lossy

material coating is computed by using the corresponding complex eigenfunctions, the

results are analytical. Therefore, the effects of impedance surfaces are computed more

accurately using this precedure than by using the approximated impedance boundary

condition. The lack of stability encountered when solving the synthesis problem in

the previous research period can be sucessfully circumvented.

B. Development in Moment Method Solution

Since all of the inside surfaces of the horn transition with or without the impedance

surfaces has been analyzed by the stepped waveguide technique, the momemt method

is applied only to solve for the electric and magnetic current distributions on the radi-

ating aperture and the outer surface of the antenna. Previous studies have indicated

a need to include the outer surface of the antenna in the Moment Method solution in

order to predict accurately the radiation pattern in the back region. The rapid variant

ripples in the H-plane radiation pattern are due to the electric currents excited on the

outside surface of the horn. In this research period, significant efforts were expanded

to include part or all of the outer surface.

When the outer surfaces of the horn antenna are included in the moment method

solution, a large number of unknowns are introduced in the hybrid matrix equation.

Therefore, there is a need for a more physical expansion and testing modes to allow

accurate field computation with a largest possible element size. Figure 2 demonstrates
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an accuracy comparison of the function expansion of a typical aperture current dis-

tribution mode sin(g) with a Galerkin testing using the subsectional sinusoidal and

triangular functions. The segment size is 0.25A, which is the maximum segment size

for the subsectional sinusoidal mode. Figure 2 clearly indicates that the triangular

subsectional function out-performs the subsectional sinusoidal function in providing

an accurate expansion of the current ditributions with a relatively large segment size.

Therefore, the triangular surface-patch function (or roof-top function) has been cho-

sen to be the expansion and testing function in the moment method solution. The

coding of the impedance elements between the electric and electric modes has been

developed and proven to be very efficient. The coding of the impedance element

between electric and magnetic modes will soon be completed.

C. Low-Loss Design using Impedance Surfaces

Investigations for applying the impedance surface in horn antennas for radiation

pattern control have been conducted by many researchers[9,10,11]. The introduction

of the lossy material on the inner walls of the horn antenna provides a good potential

for the replacement of corrugations. However, the coating of lossy material introduces

ohmic losses ranging in gain losses of 0.5 dB in [9], 10 dB in[10], and 0.8-2.7 dB in

[11]. Our goal for using impedance surfaces is to control the horn antenna radiation

pattern at a minimum ohmic loss. Such a goal can be achieved by a comprehensive

study of the coating on the inner walls of a horn antenna.

Based on the stepped waveguide mode outlined in Figure 1, the ohmic loss is

mainly contributed by the imaginary part of the propagation constant of the dominant

mode (HExx) along the horn transition. Further studies of the eigenvalue of the

dominant mode (HEll) suggest that the ohmic losses depend upon the material

11



properties, the thickness of the coating, and the size of waveguide cross section. The

following design guidelines hightlight the importance of each factor:

• As was noted in [10], the ohmic losses decrease monotonically as the cross-

sectional size increases because the electromagnetic fields are expelled from

the lossy material when the cross-sectional size of the horn transition is large.

This explains why the antenna in [9] has significantly smaller ohmic losses than

others. One can reduce the ohmic losses by not applying the lossy coating on

the small cross-sectional portion of the horn transition while applying a robust

coating on the large cross-sectional portion of the horn.

• For a large cross-sectional size antenna, the choice of the material is less critical.

For a smaller size antenna, choice of the lossy material is more important to

achieve the needed HEll mode in the horn transition. A good material for such

an application is one having a high magnetic loss.

• There exists an optimum thickness of the lossy material coating for low-loss

implememtation of the HEll mode.

Experimental results presented in a later section demonstrate a significant reduc-

tion of ohmic loss by following the above design guidelines.

D. Pattern Synthesis with Numerical Optimizations

A study of a more feasible method for the horn antenna pattern synthesis using

impedance surfaces has been conducted. It is found that a reliable and practical

theoretical design can be performed by using numerical optimization of the error

function. The error function is constructed based on the difference between the

12



desiredaperture eigenmodesand the eigenmodesresultedfrom analytical solution of

the horn transition and the outer aperture. The control parameters are the total

length of the impedance coating, the thickness of the sheet in different section of the

horn transition, and the frequency sample points in the desired antenna operating

frequency band. More explicitly, the error function can be expressed as:

Err(e,h,f) = _ {IAde,,r,a- Ades;_.(e, h, f_)l2 + IsT(g, h, _)1=} (53)

where h = (hl, 52, ...), A's are the relative amplitude sets of the eigen modes, and S T

is the reflection coefficient of in the feeding waveguide. The error function Err(e, h, f)

is then minimized with respect to the parameters by using a Fletcher-Powell nu-

merical optimization process[12,13]. Similar design processes have been applied to

optimize the structure designs of a microwave double-plane transformer[5] and of a

horn antenna on a ground plane[6]. Both applications have demonstrated that the

optimization process is an effective computer-aided design tool.

II. RESULTS

At the beginning of this research period, in order to identify the source of the rapid

variant ripples in the backlobe of the H-plane radiation pattern, a two-dimensional

horn model, having the same profile as that of the 20-dB standard gain pyramidal

horn in the principal H-plane, was introduced to investigate the effects of the electric

current on the outer surfaces of the horn. Since a two-dimensional model requires

significantly less unknowns than a three-dimensional model, the two-dimensional mo-

ment method solution permits the use of sumciently small segment size to obtain

results which compare well with measurements. Figure 3 shows the comparison of
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the measuredand predicted (basedon the two-dimesionalmodel) radiation patternsof

the 20-dB standard gain pyramidal horn with PEC wallsat a frequencyof 10.1GHz.

As we can seefrom the figure, when the outer surfacesand the feedingstructure are

included in the moment method solution, the two-dimensionalhorn model predicts

quite well the radiation pattern and its rapid variant pattern structures, except the

very last few ripples. Theseouter mostlobesare influencedby the spilled-overenergy

from the E-planesectionof the pyramidal horn that the two-dimensionalH-plane horn

does not model. This study lead us to believe that the sourceof the quick variant

ripples is the induced electric current on the outer surfacesof the horn antenna. If

all the ripple structures of the radiation patterns, both in the E- and H-plane of the

pyramidal horn are to be analyzed and controlled accurately, the entire outer sur-

face of the pyramidal horn has to be included in the momentmethod solution. It is

through this investigation that wehavedecidedto includethe entire outer surfaces,or

at least a big portion, of the pyramidal horn antennain the momentmethod solution

to provide a more accurateanalysisand the pattern control.

Basedon the analysismethod of steppedwaveguideswith impedancesurfacepre-

sented in this report, designcurves for different thicknessesof coated material are

computed to show how ohmic lossesare affected by the coated material thickness

and the sizeof the rectangular cross-sectionof the horn. Typical curvesare shown

in Figure 4 for a Northrop Nitrile lossymagnetic material which hasa relative per-

mitivity of 18.75- j0.1 and a relative permeability of 1.55 - jl.85 at 10 GHz. The

design curves indeed show an optimum coating thickness, for minimum ohmic loss,

of 60-mils for the given material at 10 GIIz for horn transitions with cross-sections

ranging from 1 to 7 inches.

To validate the analysis of the horn transition and the design guidelines of horns
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with low lossesusing impedancesurfaces,two squareaperturehornswereconstructed.

The smaller horn has dimensionsof 5 inchesby 5 incheson the aperture, and 10.5

inches in length. The larger one has7 inchesby 7 incheson the aperture, and 12.2

inchesin length. Following the designguidelinessuggestedpreviously and the data

of Figure 4, the 60-mil Northrop Nitrile sheetmaterial leadsto the smallest ohmic

losses.Becauseof the unavailability to usof that thicknessof the material, a 40-mils

thickness waschosento demonstratethe method. The coating length of the material

was chosento those included in a previous report which also used the samelength

of material coating but had slightly different thicknessof Eccosorb-GDSwhich hasa

relative permitivity of 14.83- j0.06 and a relative permeability of 1.47 - jl.46.

The measured E-plane patterns based on the the new design guidelines for the

horns are shown in Figures 5 and 6 for the horns with square apertures. It can be

noted that the gain loss of the smaller horn using the Northrop Nitrile material is

1.75 dB while the gain loss for the larger horn using the same material is only 0.24

dB. In a previous progress report, it was indicated that using Eccosorb-GDS material

of the same length of coating, the gain loss on a 20-dB standard gain horn, which

had 3.62 inches E-plane aperture size, resulted in about 4.5 dB gain loss which is far

greater than either one of the new designs. It is apparent that the new method of

analysis and design quidelines do lead to horn designs with impedance surfaces with

far smaller ohmic losses.

III. FUTURE WORK

After the progress during this period, the research project is now based on a

more sound theoretical technique. We will concentrate our future work on integrating
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the developed techniquesfor the analysis, synthesis,and control of horn antenna

radiation patterns using impedancesurfaceswith low horn gain losses.
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